If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4)(1/16)(1-2x)+5(1/16)=0
Domain of the equation: 16)(1-2x)!=0We add all the numbers together, and all the variables
x∈R
4(+1/16)(-2x+1)+5(+1/16)=0
We multiply parentheses
4(+1/16)(-2x+1)+1/16*5=0
We multiply parentheses ..
4(-2x^2+1/16*1)+1/16*5=0
We calculate fractions
(4(-2x^2+1*16*5)/()+()/()=0
We calculate terms in parentheses: +(4(-2x^2+1*16*5)/()+()/(), so:We get rid of parentheses
4(-2x^2+1*16*5)/()+()/(
We add all the numbers together, and all the variables
4(-2x^2+1*16*5)/()+1
We multiply all the terms by the denominator
4(-2x^2+1*16*5)+1*()
We add all the numbers together, and all the variables
4(-2x^2+1*16*5)
We multiply parentheses
-8x^2+320
Back to the equation:
+(-8x^2+320)
-8x^2+320=0
a = -8; b = 0; c = +320;
Δ = b2-4ac
Δ = 02-4·(-8)·320
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*-8}=\frac{0-32\sqrt{10}}{-16} =-\frac{32\sqrt{10}}{-16} =-\frac{2\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*-8}=\frac{0+32\sqrt{10}}{-16} =\frac{32\sqrt{10}}{-16} =\frac{2\sqrt{10}}{-1} $
| -2(n-8)^3/2=-1024 | | -3+7(x-5)=15×+6-8x | | 7,2x-5,8=180,6 | | -9-5x=-4-6x | | 2^(x+3)=28 | | 6x-(2x+5)=-4 | | 7y-2=4y+10 | | 8x-2x=7+2x | | 5(5x+3)=5x-45 | | (1+y)^3=0 | | 11-4x=2x | | -3(x+9)-45=2-56 | | 5/8b-6=1/2b12 | | -17x=12-(-5) | | (n-1)^3/2+5=13 | | 3-(-4x)=2x-5 | | 13s^2+5s-8=0 | | 4-1/2x=-3/4x+31/3 | | 3(2n)+12=39 | | 3p÷10=6 | | 4x=0.5-x | | 8x+40=-8(1-7x) | | 24-0.4y=10 | | x2+6x-4=0 | | x*1,2=228 | | X+2+12=8*x | | 16(3x-5)=10(4x-5) | | 7/2x-11/2=5 | | 8(4x+3)=-1+7x | | 7*x-7=35 | | 4k^2-6=8k | | 7(6x-4)=6x-28 |