If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4)(60)+x(2)=500
We move all terms to the left:
(4)(60)+x(2)-(500)=0
We add all the numbers together, and all the variables
x^2-40=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| (5x-3)^2=169 | | x/9+6=0 | | 285-y=239 | | 17=v/5+2 | | -7q^2-28=0 | | 17=v/5 | | 3y=8y+35 | | 5v-40-7v=-34 | | (5x-3)2=169 | | 6x+10-2x=723 | | -7x^2-28=0 | | 5(x-3)=1(x+14) | | 4x-7/10=2 | | 218+15x=360 | | -39=5x+2x+10 | | 2(x-7)-4=-2(-8x+4)-8x | | X+40=4x+10 | | x/4=67 | | -39=5x=2(x+5) | | 6v-12=3(v+5) | | 0.48=2.4-1.6a | | 725x-35=95x+55 | | 6p=7p-9 | | 23=-7y+5(y+7) | | 10x-(2x+12)=44 | | (2x+3)^2-36=0 | | 6(y-4)-8y=-18 | | 25,000x+45,000x+-60,000x=21 | | 12x-10=6x30 | | (12x)+(5x)=10x+91 | | 12-6c=-30 | | -3(w-6)=2w-22 |