If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4)(k)(k-6)=0
We multiply parentheses
4k^2-24k=0
a = 4; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·4·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*4}=\frac{0}{8} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*4}=\frac{48}{8} =6 $
| 3(y+41)=3y+143 | | 16=11-x | | -4d-5.6=-3.2d | | 8x+26=2•(+) | | -4/3(9y-15)+7=3 | | 6x+5=8x-17 | | 2=m4− 2 | | 8-8a=-31 | | 7y+4=y-2 | | x-2+2x+6=52 | | —4(x+5)=-4x-20 | | 12(x=20)=372 | | d-7=19 | | 20-15p+20=-20-18p | | 11x+17x-8+2=-2x+2-8 | | -1.2+u/4=-7.6 | | -19d=-19-20d | | 13x-(4x-2)=173 | | 1-6x=-17x | | 9c+6c=-90 | | -6w-2=-18-8w | | x−105=10 | | 10q+8q=90 | | 6x+1=10x-47 | | 3x-131=189-3x | | 7x+9+105=15x+60 | | 6x+20+105=15x+60 | | g+10-3=-3g-9 | | 6x+7+105=15x+60 | | 6x+18+105=15x+60 | | 3(x-7)+5=-4 | | 5x-2-2x=-26 |