If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4+z)(9+z)=0
We add all the numbers together, and all the variables
(z+4)(z+9)=0
We multiply parentheses ..
(+z^2+9z+4z+36)=0
We get rid of parentheses
z^2+9z+4z+36=0
We add all the numbers together, and all the variables
z^2+13z+36=0
a = 1; b = 13; c = +36;
Δ = b2-4ac
Δ = 132-4·1·36
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-5}{2*1}=\frac{-18}{2} =-9 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+5}{2*1}=\frac{-8}{2} =-4 $
| y2-9y=20 | | y^2-9y=20 | | -5u/2=-30 | | x(16^2-1)=0 | | 3n+12n=3( | | -6(-4u+4)-5u=4(u-2)-6 | | -(-4u+4)-5u=4(u-2)-6 | | (4x-3)(16^2-24x+9)=0 | | 2x-7x+7=x-6+13 | | (x/10)+3=6 | | 9-2x+5x=24 | | 4n^2-2n-1=0 | | 0=-4.905t^2+20t-15 | | 800=50x+100 | | 0=-4.905t^2+20t+15 | | 65÷s=15 | | 5x-2x+4=2 | | 144÷12=n | | 9=s-20 | | 99-n=6 | | j-12=23 | | 2x+21+4x-3=180 | | 3x+14+62=180 | | 7x-15+21=180 | | 3(4z+2)-9=105 | | 6x+21+-3x+9=90 | | (-4x-2)+(13x=1)= | | 7x-3+6(x+1)=90 | | 7x-3+6(x-1)=90 | | Y=-1/605(x-110)(x+110) | | 4^(3x-1)=56 | | (-4x+2)+(13x=1)= |