(4.20x-5.80)(7.20x-9.20)=10.0x+9.10

Simple and best practice solution for (4.20x-5.80)(7.20x-9.20)=10.0x+9.10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4.20x-5.80)(7.20x-9.20)=10.0x+9.10 equation:



(4.20x-5.80)(7.20x-9.20)=10.0x+9.10
We move all terms to the left:
(4.20x-5.80)(7.20x-9.20)-(10.0x+9.10)=0
We add all the numbers together, and all the variables
(4.20x-5.8)(7.20x-9.2)-(10.0x+9.1)=0
We get rid of parentheses
(4.20x-5.8)(7.20x-9.2)-10.0x-9.1=0
We multiply parentheses ..
(+28x^2-36.8x-40.6x+53.36)-10.0x-9.1=0
We add all the numbers together, and all the variables
(+28x^2-36.8x-40.6x+53.36)-10x-9.1=0
We get rid of parentheses
28x^2-36.8x-40.6x-10x+53.36-9.1=0
We add all the numbers together, and all the variables
28x^2-87.4x+44.26=0
a = 28; b = -87.4; c = +44.26;
Δ = b2-4ac
Δ = -87.42-4·28·44.26
Δ = 2681.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-87.4)-\sqrt{2681.64}}{2*28}=\frac{87.4-\sqrt{2681.64}}{56} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-87.4)+\sqrt{2681.64}}{2*28}=\frac{87.4+\sqrt{2681.64}}{56} $

See similar equations:

| 8z-6-2=166-46 | | x–6=9 | | 5(1/10x+3)=2x. | | -6(x–1)–7=-7x+2 | | 3x=(-4/9) | | 32=8(k-92) | | x(5+3)=28 | | 3,000=1.25x+1,000 | | 5/3x+1/3x=111/3=8/3x | | 19=4j+3 | | 121=49x^2 | | x/5-10=11 | | 6z–3z–7=–2+3 | | 5(1.6x+1)=8x+5 | | 4/39x+16/39=20/39 | | 1/7+y=3/7 | | -2/11w=10 | | 8(a-6)=-2(a-1) | | 2x-3=4/3x-31/3 | | 2x-6=3x-2  | | 0=3.50x-450 | | 7/8x-1/4+3/4x=1/16=x | | 75+50x=25+75x= | | (800/x)=10 | | q+-11.4=0.4 | | h+2.7=19.1 | | 2−2s=​4​/​3​​s+13 | | (x/200)=10 | | w/3=2.45 | | 3x-4=5×+20 | | 9=j/25 | | -8=-5+w |

Equations solver categories