If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4/11)a+(16/121)a+(64/1331)a=768
We move all terms to the left:
(4/11)a+(16/121)a+(64/1331)a-(768)=0
Domain of the equation: 11)a!=0
a!=0/1
a!=0
a∈R
Domain of the equation: 121)a!=0
a!=0/1
a!=0
a∈R
Domain of the equation: 1331)a!=0We add all the numbers together, and all the variables
a!=0/1
a!=0
a∈R
(+4/11)a+(+16/121)a+(+64/1331)a-768=0
We multiply parentheses
4a^2+16a^2+64a^2-768=0
We add all the numbers together, and all the variables
84a^2-768=0
a = 84; b = 0; c = -768;
Δ = b2-4ac
Δ = 02-4·84·(-768)
Δ = 258048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{258048}=\sqrt{36864*7}=\sqrt{36864}*\sqrt{7}=192\sqrt{7}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-192\sqrt{7}}{2*84}=\frac{0-192\sqrt{7}}{168} =-\frac{192\sqrt{7}}{168} =-\frac{8\sqrt{7}}{7} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+192\sqrt{7}}{2*84}=\frac{0+192\sqrt{7}}{168} =\frac{192\sqrt{7}}{168} =\frac{8\sqrt{7}}{7} $
| -d=-20-2d | | 7v/5=-35 | | -36x^2+169=0 | | 4(4-x)+6(x-1)=x+200 | | 5=j-55/7 | | 7(t-2)+7t=7(2t+2)-13 | | j-55/7=5 | | -10=7x-10 | | -3x-6/4=5+x/3 | | 7(4-k)3(6-8k)=78 | | 10(2-4n)3n=353 | | 4x-10x=38 | | 8(4x+9)=0 | | 96+45+y=360 | | 6(b-7)+4(-6b+3)=42 | | -2x-17(x+3)=-3(6x+5) | | 6(1+5b)=-204 | | -3(4p+3)-2(6-14p)=3(2+5p) | | 90=9(r-5) | | 5x-10-2x=9 | | t+25/5=7 | | -2n+5n=-16 | | 2(x-2)=5x-7-3x | | 15+3x=-21+7x | | -20=3r+2r | | 20m^2-78m=-28 | | y=4+44 | | 2x2=15x+27 | | (6x^2)(7x+7)=0 | | 14e-8=6+6e | | 20x=175+25 | | 3x+8=5x-21 |