(4/3)*z=10

Simple and best practice solution for (4/3)*z=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/3)*z=10 equation:



(4/3)*z=10
We move all terms to the left:
(4/3)*z-(10)=0
Domain of the equation: 3)*z!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
(+4/3)*z-10=0
We multiply parentheses
4z^2-10=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $

See similar equations:

| -3x+5=17= | | 4x=18+3+(x+1) | | -5c+2=27= | | -2r+3=19= | | L=w(2)+2 | | 8x+7=-7x-7 | | 7x+13+2x=2(3x+6.5) | | 102x+15=15 | | (2x-13)+(x+41)+x=180 | | 2^(3+x)+2^(3x)=65 | | 10w-10+6w=50 | | -8(v+7)=5v+22 | | 2x+27=4x+3 | | (2x-6)+(x+15)+90=180 | | -9=13x-7x+12 | | 7x-41=2(x-8) | | 10m-4(m+3)=(6m-1)2 | | -6=-6y+4(y-4) | | 14/35=16/x | | -9k+3(8-k)=6(4-2k) | | (x-60)+x=180 | | -2y+15=37 | | 206=10x+14 | | 206=10x | | 4(x+4)+7x=27 | | .4(2x+8)=20 | | 5/2(4x+12)=60+10x | | .4(2x+8)=2 | | X=(180)12÷5x+1 | | f=9/5(-1)+32 | | 18-(2/3)*x=6 | | w/9+9=7 |

Equations solver categories