(4/3)z=10

Simple and best practice solution for (4/3)z=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/3)z=10 equation:



(4/3)z=10
We move all terms to the left:
(4/3)z-(10)=0
Domain of the equation: 3)z!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
(+4/3)z-10=0
We multiply parentheses
4z^2-10=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $

See similar equations:

| 2(x-12)=7(x+3) | | 3x-5(2x+9)=-31 | | ((4/3)z)=10 | | 0+3x=40+-1x | | (x+34)+40=2x | | 39-5x=47-9x | | 100=-1.25x | | 100+35j=72+42j | | 48x2-8x+1=0 | | 2.50+0.178x=21.19 | | 1x+79=-7x+143 | | -48x2-8x-1=0 | | 180=2x+30 | | 51+-2x=-9x+86 | | 2(x+5)-(2x-1)=3(x+3)-10 | | 9x+13=5x-7+4x | | 7x-9x+2=-7x+22 | | -4x+61=-10x+103 | | 21x-6-6x=9 | | -2x+5=3x+7 | | -3(x-4)-1=8 | | 2x+22=-2x+54 | | 1/4x=-5/2 | | 15+5x=-4x+42 | | 60+3x=109+-4x | | 32n=88n | | 4x=32-4.5 | | 7x-0,2-x-4,8+3x-1,5+5x=0,1 | | X+0.20x=14.00 | | 4x=(32-4.5) | | x+9-3x=2x-2x | | -3x+38=-10x+101 |

Equations solver categories