If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4/5)+(1/6)x=1
We move all terms to the left:
(4/5)+(1/6)x-(1)=0
Domain of the equation: 6)x!=0determiningTheFunctionDomain (1/6)x-1+(4/5)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/6)x-1+(+4/5)=0
We multiply parentheses
x^2-1+(+4/5)=0
We get rid of parentheses
x^2-1+4/5=0
We multiply all the terms by the denominator
x^2*5+4-1*5=0
We add all the numbers together, and all the variables
x^2*5-1=0
Wy multiply elements
5x^2-1=0
a = 5; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·5·(-1)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*5}=\frac{0-2\sqrt{5}}{10} =-\frac{2\sqrt{5}}{10} =-\frac{\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*5}=\frac{0+2\sqrt{5}}{10} =\frac{2\sqrt{5}}{10} =\frac{\sqrt{5}}{5} $
| -2(1-5x)=(x+1)-1 | | 360=a+2a+a+2a | | 11.0.2x-8=-2-x | | 4=2n-4n | | -12x-50=106 | | 3.2=n/36 | | 22-4n=4-12n | | 315-7x+20x=575 | | x^-2-3x^-1-4=0 | | 8-4y=-20 | | 1506-((x*x*x*x)/2401)-5x=0 | | 0=12x2+48 | | n/3-9=21 | | x²+18=19 | | 5a+8=-38 | | (4/5)+(1/6x)=1 | | 200=5x(12)/2 | | x^{-2}-3x^{-1}-4=0 | | 8+3nn=6 | | -8|3y-1|-4=-20 | | 6(x+1)+5=19-2(4-3x) | | 120=-10(x-1) | | (x+5)(x–5)=-7 | | -4=1-5(1-7n) | | 2(x-1)/5=2(x+6)/12 | | 5x^2+3x-x^2+7x=111 | | (-17/31)x+7/41=(15/31) | | 4/5+1/6x=1 | | -20.7=x/6-1.5 | | x²-9x+18=0 | | 2(4x+1=-12+6 | | 25*(-5)(2)= |