(4/5)m=13/21

Simple and best practice solution for (4/5)m=13/21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/5)m=13/21 equation:



(4/5)m=13/21
We move all terms to the left:
(4/5)m-(13/21)=0
Domain of the equation: 5)m!=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
(+4/5)m-(+13/21)=0
We multiply parentheses
4m^2-(+13/21)=0
We get rid of parentheses
4m^2-13/21=0
We multiply all the terms by the denominator
4m^2*21-13=0
Wy multiply elements
84m^2-13=0
a = 84; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·84·(-13)
Δ = 4368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4368}=\sqrt{16*273}=\sqrt{16}*\sqrt{273}=4\sqrt{273}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{273}}{2*84}=\frac{0-4\sqrt{273}}{168} =-\frac{4\sqrt{273}}{168} =-\frac{\sqrt{273}}{42} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{273}}{2*84}=\frac{0+4\sqrt{273}}{168} =\frac{4\sqrt{273}}{168} =\frac{\sqrt{273}}{42} $

See similar equations:

| 7r-(5r-7)=3+2r | | 6(7x-4)= | | /g/12=—10;g | | –7g−6g+15=–13g+15 | | 500x=1500 | | 3^n=12^4 | | m+-5=27 | | (3x+1)+(2x+2)x2=180 | | 500x+27=1500 | | 2(x-3)-8=-5 | | 3x+2x+3x=24 | | 7-7/5x=12 | | 3w+2(w+5)=20 | | 0.4k=28 | | -6.25x+262.6=250 | | O,37x=0 | | 3.6x-14=40 | | 5=x/5+7 | | 9*2+b*2=41*2 | | -27-6m=3m-5(6m-3) | | 3/5*x=9 | | z−1=4 | | 8(5x−5)=8(5x-5) | | 2^3x^+^1=2^10 | | 4/2c=46 | | 1=w2/4 | | 2^3^x^+^1=2^10 | | x/4=14/14 | | 7(3-5g)=3(g-6) | | 4x2+16x+4=0 | | 14y+32=6y | | x/14=14/4 |

Equations solver categories