If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4/5)x+(1/3)=3
We move all terms to the left:
(4/5)x+(1/3)-(3)=0
Domain of the equation: 5)x!=0determiningTheFunctionDomain (4/5)x-3+(1/3)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+4/5)x-3+(+1/3)=0
We multiply parentheses
4x^2-3+(+1/3)=0
We get rid of parentheses
4x^2-3+1/3=0
We multiply all the terms by the denominator
4x^2*3+1-3*3=0
We add all the numbers together, and all the variables
4x^2*3-8=0
Wy multiply elements
12x^2-8=0
a = 12; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·12·(-8)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*12}=\frac{0-8\sqrt{6}}{24} =-\frac{8\sqrt{6}}{24} =-\frac{\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*12}=\frac{0+8\sqrt{6}}{24} =\frac{8\sqrt{6}}{24} =\frac{\sqrt{6}}{3} $
| -18/x=-9 | | (4x-5)(2x+4)=0 | | -7/x=1 | | 10y=37y | | 5*x+8=83/4 | | 10-8k=2+(12-27k) | | 180=45+5x+35 | | 5(u+1)-7=3(u-)+2u | | 6y=15y+31 | | 12x-8x+1x=15 | | 8x-3(2x-4)-3(x-6)=0 | | 1/4^5x=32^2x+8 | | (100)4/10=x | | 12s-5s+2s-9s+1s=7 | | (X-$9,152,525.83)/x=1.25 | | 35+95+x=180 | | 180-z=2(75) | | 10c-2c-7c-1c+4c=20 | | 55+45+x=90 | | 2x-((19-2x)/2)=(2x-11)/2 | | k-k+4K+k=20 | | 2w+-9w=7 | | 10-8k=2+3(4-9k) | | 20p+p-15p+2p+p=9 | | 6+3=3y+12-2y | | 5/7c+29=B | | 6x+47=10x=15 | | 3v+3v+v=14 | | 9u-2u-7u+2u=6 | | 10x/4+5=15 | | 4h+5h+3h-11h=14 | | 16t-6t-4t=6 |