If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4/5)x+(2/3)=2
We move all terms to the left:
(4/5)x+(2/3)-(2)=0
Domain of the equation: 5)x!=0determiningTheFunctionDomain (4/5)x-2+(2/3)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+4/5)x-2+(+2/3)=0
We multiply parentheses
4x^2-2+(+2/3)=0
We get rid of parentheses
4x^2-2+2/3=0
We multiply all the terms by the denominator
4x^2*3+2-2*3=0
We add all the numbers together, and all the variables
4x^2*3-4=0
Wy multiply elements
12x^2-4=0
a = 12; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·12·(-4)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*12}=\frac{0-8\sqrt{3}}{24} =-\frac{8\sqrt{3}}{24} =-\frac{\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*12}=\frac{0+8\sqrt{3}}{24} =\frac{8\sqrt{3}}{24} =\frac{\sqrt{3}}{3} $
| 10k+5=64 | | 35x^2-53x+20=0/x^2 | | 4/5(15x+20)-7×=5/6(12x-24)+6 | | 3x-8/2=×-6 | | a/5=5*(-29) | | 2z+2z+5=13 | | 6x+A=R | | 2/x=9/100 | | s+5/2s+10=31 | | -64=-25u^2 | | 3x/2+12=10 | | -5.5x-20=5.5x-24 | | 7+x+x=4 | | 1/4(8h-12)=4+2h | | -5x-20=5.5x+24 | | 8x/2+3=2 | | 10-2(2x+5)=3x-(4+6x) | | x+109+x+89=180° | | 0=-31x | | 10q(4)=76 | | 32+96+x/3=108 | | 4x+7+19=3*12-4+(5*16)-5. | | 4x+7+19=3*12-4+(5*16)-5 | | x2-0.5x+-0.25=0 | | -6m+46-6(m-2)=9m-(2m-6)-4m+7 | | 32xˆ2-2x-6=0 | | 6t=8t+10 | | 5-(6-3x)=2x+2 | | 5n+4(n-3)=7n-(2n+2) | | C(x)=15.75-0.25x | | 9(2x-9.5)=-19.5+8x | | 21x-5=4(5x+5)-15 |