(4/6)*(4x+3)=15

Simple and best practice solution for (4/6)*(4x+3)=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/6)*(4x+3)=15 equation:



(4/6)(4x+3)=15
We move all terms to the left:
(4/6)(4x+3)-(15)=0
Domain of the equation: 6)(4x+3)!=0
x∈R
We add all the numbers together, and all the variables
(+4/6)(4x+3)-15=0
We multiply parentheses ..
(+16x^2+4/6*3)-15=0
We multiply all the terms by the denominator
(+16x^2+4-15*6*3)=0
We get rid of parentheses
16x^2+4-15*6*3=0
We add all the numbers together, and all the variables
16x^2-266=0
a = 16; b = 0; c = -266;
Δ = b2-4ac
Δ = 02-4·16·(-266)
Δ = 17024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17024}=\sqrt{64*266}=\sqrt{64}*\sqrt{266}=8\sqrt{266}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{266}}{2*16}=\frac{0-8\sqrt{266}}{32} =-\frac{8\sqrt{266}}{32} =-\frac{\sqrt{266}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{266}}{2*16}=\frac{0+8\sqrt{266}}{32} =\frac{8\sqrt{266}}{32} =\frac{\sqrt{266}}{4} $

See similar equations:

| 0.4x+2=0.5x-3 | | 13h-3=12h+5-h | | 14x-2x+3=3x-12-18 | | 0.1x^2-0.6x+9=0 | | 7y+32=3y+24 | | e+13=4e+4 | | 90=5x-85 | | -12x-27=9-6x | | -2a^2(-3a)=0 | | 7m=210 | | 6(v+1)=3v-24 | | 0.3x=127 | | x+20+25x-4=68 | | 9z-22=4z+3 | | 720n=n-2•180 | | 49-7x=-4(7x+7)+4 | | x/80=4 | | 7-10h=-43 | | 2(k−5)+3k=k+6​ | | (6x-2)/2=1 | | ​2(k−5)+3k=k+6​ | | 3(8x+94)=360 | | -10r=-90 | | 32=8+9+x | | 8(4+9a)=464 | | 3x-2/5x+6=0 | | 4p/6=27=39 | | -2(6x+4)=88 | | (3x+2)+1=90 | | 3(y-2)-8=-5(-4y+6)-5y | | 3(8x+93)=360 | | -2(6x4)=88 |

Equations solver categories