(4/x)-3=2/5x

Simple and best practice solution for (4/x)-3=2/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/x)-3=2/5x equation:



(4/x)-3=2/5x
We move all terms to the left:
(4/x)-3-(2/5x)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+4/x)-(+2/5x)-3=0
We get rid of parentheses
4/x-2/5x-3=0
We calculate fractions
20x/5x^2+(-2x)/5x^2-3=0
We multiply all the terms by the denominator
20x+(-2x)-3*5x^2=0
Wy multiply elements
-15x^2+20x+(-2x)=0
We get rid of parentheses
-15x^2+20x-2x=0
We add all the numbers together, and all the variables
-15x^2+18x=0
a = -15; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·(-15)·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*-15}=\frac{-36}{-30} =1+1/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*-15}=\frac{0}{-30} =0 $

See similar equations:

| |2x-5|=2x+5 | | 18=y-15 | | 45=2v+(3+v)-7 | | -2x+8=-4(2x-5) | | -3/4x-2=10 | | 3=85-c | | 2x2+5=8x2-211 | | 76=8^6g | | 50=91-b | | 4x+31=165 | | h=-16(0^2)+30(0)+4 | | (x-2)/(5x+20)*(3x+12)/(3x-6)=0 | | 6(2g−1)=13g | | h=-16(1)^2+30(1)+4 | | 4y=-3y+24 | | h=-16(0)^2+30(0)+4 | | 4^k-4^k-1=48 | | 48-n=9 | | h=-16(0.5)^2+30(0.5)+4 | | 64=u-6 | | X/5+x/10-x/6=1 | | 20=27-v | | 3x+4(x+1)=116 | | 88-e=10 | | -4(x-7)=2(x+5) | | 5h+2(11−h)=−5 | | ∣x−2∣=∣4+x∣ | | -5=8-p-11 | | 6x+39=2+11 | | -4(x-7)=2(x+55 | | 6x+39=2x-11 | | 65=(8x-5) |

Equations solver categories