(4/x+2)+(2/2x+4)=16

Simple and best practice solution for (4/x+2)+(2/2x+4)=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/x+2)+(2/2x+4)=16 equation:



(4/x+2)+(2/2x+4)=16
We move all terms to the left:
(4/x+2)+(2/2x+4)-(16)=0
Domain of the equation: x+2)!=0
x∈R
Domain of the equation: 2x+4)!=0
x∈R
We get rid of parentheses
4/x+2/2x+2+4-16=0
We calculate fractions
8x/2x^2+2x/2x^2+2+4-16=0
We add all the numbers together, and all the variables
8x/2x^2+2x/2x^2-10=0
We multiply all the terms by the denominator
8x+2x-10*2x^2=0
We add all the numbers together, and all the variables
10x-10*2x^2=0
Wy multiply elements
-20x^2+10x=0
a = -20; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-20)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-20}=\frac{-20}{-40} =1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-20}=\frac{0}{-40} =0 $

See similar equations:

| 5(1+b)-6=-2b-31 | | -6(2x-2)=-8x+40 | | X/2-3=3/4x-1 | | 4(3+3x)=-12+6x | | 5x²=16+x² | | -8w(w+1)=-5(w+10) | | p=0.85NN=42 | | 3a=12a= | | Sx9=81 | | -20=3x+8 | | 2x/3-1/5=x/10 | | P+34=-3(2-7p) | | 3x.4x=432 | | 12y^2-16y=5=0 | | 3x(4x)=432 | | 2-4(3r-2)/5=14 | | 29+7x=-3(5x+5) | | x-5/x=6 | | 11x=3.14 | | 6x=8=32 | | -2x-2=-24 | | Y=-0x | | H(2)=x^2+3 | | 6(x^2+2x)^2+1=-5(x^2+2x) | | 6x+4x-5=2(5x+1) | | 2(3x-3×)=10x+6 | | 5(11x+12)-x=-12(x-5) | | 4p+16=-24 | | 25x²-30x+11=0 | | 6-3/4x=9/2 | | 2^x^2=16 | | 8b+7=31 |

Equations solver categories