(4/x-4)-(4/2x-8)=6

Simple and best practice solution for (4/x-4)-(4/2x-8)=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/x-4)-(4/2x-8)=6 equation:



(4/x-4)-(4/2x-8)=6
We move all terms to the left:
(4/x-4)-(4/2x-8)-(6)=0
Domain of the equation: x-4)!=0
x∈R
Domain of the equation: 2x-8)!=0
x∈R
We get rid of parentheses
4/x-4/2x-4+8-6=0
We calculate fractions
8x/2x^2+(-4x)/2x^2-4+8-6=0
We add all the numbers together, and all the variables
8x/2x^2+(-4x)/2x^2-2=0
We multiply all the terms by the denominator
8x+(-4x)-2*2x^2=0
Wy multiply elements
-4x^2+8x+(-4x)=0
We get rid of parentheses
-4x^2+8x-4x=0
We add all the numbers together, and all the variables
-4x^2+4x=0
a = -4; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-4)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-4}=\frac{-8}{-8} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-4}=\frac{0}{-8} =0 $

See similar equations:

| x/4-1/2=31/4 | | x²-4x-12=0 | | 4(3x+8)=12+32 | | -3=m+10/3 | | 26=5x-10 | | 2x-3/9+x-1/2=x-4 | | -74=6-8x | | 2x+12=2x^2 | | -74=4-8k | | 70+-10x=98 | | 0.12(x-6)+0.06x=0.08x-0.1 | | 67/9=2/3-5x | | 1/4x+1/4=2-3/4x+2 | | 0.12(y-6)+0.06y=0.08y-0.1 | | -119=8k-7 | | 4x=18+6 | | (x+4)^2-45=0 | | 2x+5-3x-2=180 | | (x-8/3x)+1=(x+7/x) | | 0,2(15x-20)=0,5(8x-6) | | x+0.20x=22500 | | (2x+1)+(2x+2)=10 | | 18+6x-18=5x+1 | | -x-2=180 | | -x+5-7=180 | | 12(x/2+x-4/4=2+x) | | 5x-(x-2)=2x-0 | | X2+10x-360=0 | | x+5-2x-7=180 | | 1002=16t^2 | | 7(1=c)=6(c-6) | | -3x-1/2=11/2 |

Equations solver categories