(4/y-5)-(7/4y+8)+(3/y-5)=0

Simple and best practice solution for (4/y-5)-(7/4y+8)+(3/y-5)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/y-5)-(7/4y+8)+(3/y-5)=0 equation:



(4/y-5)-(7/4y+8)+(3/y-5)=0
Domain of the equation: y-5)!=0
y∈R
Domain of the equation: 4y+8)!=0
y∈R
We get rid of parentheses
4/y-7/4y+3/y-5-8-5=0
We calculate fractions
(12y+4)/4y^2+(-7y)/4y^2-5-8-5=0
We add all the numbers together, and all the variables
(12y+4)/4y^2+(-7y)/4y^2-18=0
We multiply all the terms by the denominator
(12y+4)+(-7y)-18*4y^2=0
Wy multiply elements
-72y^2+(12y+4)+(-7y)=0
We get rid of parentheses
-72y^2+12y-7y+4=0
We add all the numbers together, and all the variables
-72y^2+5y+4=0
a = -72; b = 5; c = +4;
Δ = b2-4ac
Δ = 52-4·(-72)·4
Δ = 1177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1177}}{2*-72}=\frac{-5-\sqrt{1177}}{-144} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1177}}{2*-72}=\frac{-5+\sqrt{1177}}{-144} $

See similar equations:

| z/2-2/z=5z+7/10 | | z/2-2/z=5z+7-10 | | 5y/6-1=4-2y/3 | | 7=5x2+9 | | 7x-1=15x+197 | | 17=w/2+15 | | 3(k-3)-6=6k-(5k-2) | | (3x-14)+(x+38)=180 | | u/3+15=25 | | 7x=236 | | 0-2(0-1-8n)-4n=94 | | 19=9+2(x-14) | | 140+5x=70 | | 4x-4+3x-52=180 | | 4x-4=3x-52 | | (2x-22)=(x+5) | | 3(2m+1)-7=50 | | 3(-7+5m)=72 | | 5x2-90=10+4x2 | | 5x+10=5+2x+5 | | (7/3x)=21 | | 4x-8x-16=-4x+7-16 | | 285+x=180 | | -8−6f=-5f | | 9(x+5)-5(6x-2)=16 | | 65°+90°+50°+80°+x=180 | | 4s+9=3s | | -14x-10=-15x-6 | | 6k+12=6(k=2) | | -4r+36=2r-8(r-6) | | 1/3y+2=1/7y | | 3c+1=c=1 |

Equations solver categories