(40/x)+x=80

Simple and best practice solution for (40/x)+x=80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (40/x)+x=80 equation:



(40/x)+x=80
We move all terms to the left:
(40/x)+x-(80)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+40/x)+x-80=0
We add all the numbers together, and all the variables
x+(+40/x)-80=0
We get rid of parentheses
x+40/x-80=0
We multiply all the terms by the denominator
x*x-80*x+40=0
We add all the numbers together, and all the variables
-80x+x*x+40=0
Wy multiply elements
x^2-80x+40=0
a = 1; b = -80; c = +40;
Δ = b2-4ac
Δ = -802-4·1·40
Δ = 6240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6240}=\sqrt{16*390}=\sqrt{16}*\sqrt{390}=4\sqrt{390}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-4\sqrt{390}}{2*1}=\frac{80-4\sqrt{390}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+4\sqrt{390}}{2*1}=\frac{80+4\sqrt{390}}{2} $

See similar equations:

| 9w−6=75 | | -63=7x+7 | | 5y-3+y+53=7y+50-3y | | 8.1x-13.4=59.5 | | 120-42x=60-2x | | 35+c=180 | | (x+1)^2-2(x+1)-15=0 | | 35+a=180 | | -40+2n=4n-8n-64 | | 4x-28=8x-14 | | 0=5t^2+9t+48 | | 2m+8=3m+6 | | x+2x+8+4x=43 | | 4.4x-2.9=10.3 | | 3x+2=2(1-x) | | 2^x*5^{x+2}=25000 | | -3x+8=-73 | | x+2x+12+2x=67 | | 9(x-2)=3(x+4 | | A=6b=3 | | 5f+18=4f+24 | | 8x-4(2x+1)=12 | | 0.6=1.6-2n | | 3.7=x-3/20 | | b+132=180 | | 41.8=1.8+5p | | 50=12+2m | | x=154-40+.50x | | 3(2^x-3)=884 | | -12x17=53 | | 132+f=180 | | -7x=5x+17 |

Equations solver categories