(41/4)d=71/2

Simple and best practice solution for (41/4)d=71/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (41/4)d=71/2 equation:



(41/4)d=71/2
We move all terms to the left:
(41/4)d-(71/2)=0
Domain of the equation: 4)d!=0
d!=0/1
d!=0
d∈R
We add all the numbers together, and all the variables
(+41/4)d-(+71/2)=0
We multiply parentheses
41d^2-(+71/2)=0
We get rid of parentheses
41d^2-71/2=0
We multiply all the terms by the denominator
41d^2*2-71=0
Wy multiply elements
82d^2-71=0
a = 82; b = 0; c = -71;
Δ = b2-4ac
Δ = 02-4·82·(-71)
Δ = 23288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{23288}=\sqrt{4*5822}=\sqrt{4}*\sqrt{5822}=2\sqrt{5822}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5822}}{2*82}=\frac{0-2\sqrt{5822}}{164} =-\frac{2\sqrt{5822}}{164} =-\frac{\sqrt{5822}}{82} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5822}}{2*82}=\frac{0+2\sqrt{5822}}{164} =\frac{2\sqrt{5822}}{164} =\frac{\sqrt{5822}}{82} $

See similar equations:

| 2y+33=-7(y+3) | | 4x-1-x=2 | | (4*15)-7+86+(7y-1)=180 | | 14x56x-22=8(7x-1) | | K-4(k+3)=3 | | 5+h+9=42 | | 1/3(18+12q)=6(2q-7 | | 4(x-1)*1=2x+2(x-1)-1 | | 5x-57=x+11 | | 0.4x+3.9=5,78 | | 4+2(x+6)=3x | | 12(x-3)=10+2(6x-19) | | 3x=-1x-3 | | 6-6p-2=-7p+8 | | 66n-7=n | | -7.5x+0.57=-2.43 | | 10x-3x=12x-1.1 | | -2(x+5)+3=4x-19 | | 1/2y=92 | | 12-3x=6 | | 5(u+4)=65 | | X+7=3+m+4 | | g+6+7=27 | | 4x-7=x=11 | | 5(x+4)=-7(x-2) | | 5-5w=-4w | | 150=n+60 | | b+5/7=5/10 | | 7(x-4)+6=2x+5(-5+x) | | 27.2+90+d=180 | | 34x+95=3(14x+90 | | (4(15)-7)+86+7y-1=180 |

Equations solver categories