If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (4k + -1)(3k + 10) = 0 Reorder the terms: (-1 + 4k)(3k + 10) = 0 Reorder the terms: (-1 + 4k)(10 + 3k) = 0 Multiply (-1 + 4k) * (10 + 3k) (-1(10 + 3k) + 4k * (10 + 3k)) = 0 ((10 * -1 + 3k * -1) + 4k * (10 + 3k)) = 0 ((-10 + -3k) + 4k * (10 + 3k)) = 0 (-10 + -3k + (10 * 4k + 3k * 4k)) = 0 (-10 + -3k + (40k + 12k2)) = 0 Combine like terms: -3k + 40k = 37k (-10 + 37k + 12k2) = 0 Solving -10 + 37k + 12k2 = 0 Solving for variable 'k'. Factor a trinomial. (-10 + -3k)(1 + -4k) = 0Subproblem 1
Set the factor '(-10 + -3k)' equal to zero and attempt to solve: Simplifying -10 + -3k = 0 Solving -10 + -3k = 0 Move all terms containing k to the left, all other terms to the right. Add '10' to each side of the equation. -10 + 10 + -3k = 0 + 10 Combine like terms: -10 + 10 = 0 0 + -3k = 0 + 10 -3k = 0 + 10 Combine like terms: 0 + 10 = 10 -3k = 10 Divide each side by '-3'. k = -3.333333333 Simplifying k = -3.333333333Subproblem 2
Set the factor '(1 + -4k)' equal to zero and attempt to solve: Simplifying 1 + -4k = 0 Solving 1 + -4k = 0 Move all terms containing k to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -4k = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -4k = 0 + -1 -4k = 0 + -1 Combine like terms: 0 + -1 = -1 -4k = -1 Divide each side by '-4'. k = 0.25 Simplifying k = 0.25Solution
k = {-3.333333333, 0.25}
| 10(3)+9=180 | | 7(7/13)-4=17 | | r^3+7r^2+14r+8=0 | | 10(-3)+9=180 | | (2/5)/x-0.5=7.6 | | 0.35x+.05(16-x)=.10(20) | | (-5)^3+9(-2/3)-1 | | y=-2x^2-12x-19 | | 2x+49=8x+7 | | y/4.4+1.02=5.9 | | 6x+75=4x+300 | | 750-50x=-85+35x | | -22-15= | | r^3-r^2+2r=0 | | (9m+11)(9m+9)=79 | | 9/x+4/6x-3 | | 1/3(10x-4)=8 | | 8-15= | | 53=6/z | | 3p^2+10q=3p^2-10q | | 22-15= | | (4xy^2-5)dx+(4x^2y+2)dy=0 | | 0.08(24)+0.02=0.04(24+x) | | v+7=v-7 | | 3x(3y-2)-7xy-2x(2y-2)= | | 4f-f= | | 2x+65=6x+5 | | 1/9y+3=-13 | | 3x+120=2x+170 | | 20u^3y^3-16y^4=0 | | y=4/5x-4 | | -3.8-13.4p=-406.606 |