(4w+3)(8+w)=0w=

Simple and best practice solution for (4w+3)(8+w)=0w= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4w+3)(8+w)=0w= equation:



(4w+3)(8+w)=0w=
We move all terms to the left:
(4w+3)(8+w)-(0w)=0
We add all the numbers together, and all the variables
(4w+3)(w+8)-0w=0
We add all the numbers together, and all the variables
-1w+(4w+3)(w+8)=0
We multiply parentheses ..
(+4w^2+32w+3w+24)-1w=0
We get rid of parentheses
4w^2+32w+3w-1w+24=0
We add all the numbers together, and all the variables
4w^2+34w+24=0
a = 4; b = 34; c = +24;
Δ = b2-4ac
Δ = 342-4·4·24
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{193}}{2*4}=\frac{-34-2\sqrt{193}}{8} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{193}}{2*4}=\frac{-34+2\sqrt{193}}{8} $

See similar equations:

| 7(7+6x)=553 | | -7=4+u | | (x-30)(x+50)=180 | | -2x+5=6x+3 | | 5^x+14=28 | | 2(2x-4)=-8x+4 | | 22.5-1.5x=5+4x | | n-4n+7=-20 | | 3(x-16)=-2(x-3)+2 | | 16s-13s=-15 | | 2(3x=11)=10 | | 2(b-12)=-4 | | 2(11x11)=11 | | -2k+12k=10 | | 12x+19=15x-17 | | 4x+7+5x-4=9x+6 | | +5y+20+3y=-20 | | 8+30-5x=18x+24-2x | | 7x+3x+9=180 | | -5,4y+14-2y=4 | | (-5,4y+14-2y=4) | | 10-(4v+6)=4v-4 | | 0.20x+160=0.10x+200 | | 2x-3+4x-10=59 | | 7=5+2d | | 5x+3=-4(x-3) | | X-11+8x=20 | | 8(10p+4)=1 | | 3x-8=27-5x | | 5*(x+6)=45 | | 7*(x-4)=14 | | 3(1-5)+2x=55 |

Equations solver categories