If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x+1)(3x-7)-5(2-7x)=2x(x+10)-7
We move all terms to the left:
(4x+1)(3x-7)-5(2-7x)-(2x(x+10)-7)=0
We add all the numbers together, and all the variables
(4x+1)(3x-7)-5(-7x+2)-(2x(x+10)-7)=0
We multiply parentheses
(4x+1)(3x-7)+35x-(2x(x+10)-7)-10=0
We multiply parentheses ..
(+12x^2-28x+3x-7)+35x-(2x(x+10)-7)-10=0
We calculate terms in parentheses: -(2x(x+10)-7), so:We get rid of parentheses
2x(x+10)-7
We multiply parentheses
2x^2+20x-7
Back to the equation:
-(2x^2+20x-7)
12x^2-2x^2-28x+3x+35x-20x-7+7-10=0
We add all the numbers together, and all the variables
10x^2-10x-10=0
a = 10; b = -10; c = -10;
Δ = b2-4ac
Δ = -102-4·10·(-10)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{5}}{2*10}=\frac{10-10\sqrt{5}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{5}}{2*10}=\frac{10+10\sqrt{5}}{20} $
| 30/100=n/4” | | 4c-29=28 | | (13x-4)+61+58=180 | | 3x-10=x+32 | | 5p+10p=78 | | 4x2+5x+6=0 | | 13=s+11 | | 20/n=60 | | 1-6u=49 | | 6=t+6 | | 7x-6-1x=6x+3x+0 | | 2q+454=870 | | 3/5n=3 | | b+12/5=8 | | n/1=7 | | n/6-(-21)=25 | | 5x-6=9+2xx= | | 5+w=9 | | 5(2t+3)=75 | | F(2)F(x)=3x-16 | | 10+55.45x=57.95x | | 2k+9=8k-15k= | | 40=s-72/5 | | 2b+11+3b=6b+3 | | 5(u+3)=60 | | 0.9*x=1 | | 5-7y=-30y= | | d=1.25/3=2.53 | | F(2)=3x-16 | | x*(x-1)=-2*(x-1) | | 5(3x+5)+15=6(4x+5)+23 | | 3x+x=8-12X= |