(4x+12)+(x+48)+(1/3x+56)=180

Simple and best practice solution for (4x+12)+(x+48)+(1/3x+56)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+12)+(x+48)+(1/3x+56)=180 equation:



(4x+12)+(x+48)+(1/3x+56)=180
We move all terms to the left:
(4x+12)+(x+48)+(1/3x+56)-(180)=0
Domain of the equation: 3x+56)!=0
x∈R
We get rid of parentheses
4x+x+1/3x+12+48+56-180=0
We multiply all the terms by the denominator
4x*3x+x*3x+12*3x+48*3x+56*3x-180*3x+1=0
Wy multiply elements
12x^2+3x^2+36x+144x+168x-540x+1=0
We add all the numbers together, and all the variables
15x^2-192x+1=0
a = 15; b = -192; c = +1;
Δ = b2-4ac
Δ = -1922-4·15·1
Δ = 36804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{36804}=\sqrt{4*9201}=\sqrt{4}*\sqrt{9201}=2\sqrt{9201}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-2\sqrt{9201}}{2*15}=\frac{192-2\sqrt{9201}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+2\sqrt{9201}}{2*15}=\frac{192+2\sqrt{9201}}{30} $

See similar equations:

| 7x-1+10x+13=22x-13 | | –19u+3+16u=–2u+19 | | 4x-7+3x=-30 | | 7x-1+10x=22x-13 | | -4g=92 | | 5(x+1)-8=3x+2(-4+x) | | -81=9p | | -8y+2(y-6)=18 | | 5/7=a/6 | | 5/7=n/6 | | -62=5(2x+2)-2(6-5x) | | 3X+1+3X+1=7x-3 | | -2(5t-3)+4t=8t-9 | | (3x+1)=(3x+1)=7x-3 | | x+2/x+6=x-1/x+2 | | 0.03x+0.05=0.35 | | 0.1r-2=0.65 | | (9z-13)^2-5=0 | | 2n−7n+20n+–7n+–4=–20 | | 125=x/7+x/17.5 | | (h-8)^2=100 | | 15/(5x)=30 | | 2n−7n+20n+–7n−–4=–20 | | 3x+18÷2=21 | | 9x+5=`3x-37 | | 4/5+3/(4x)=-1/(6x) | | 15x²=90x | | 150=15x+20 | | 12-3(2w+1)=6w-3(7+w) | | 7+w=9.3 | | –(t−–5)+–3=–9 | | 15s+-6s+-20s+-3s-17s=15 |

Equations solver categories