(4x+13)(6x+2)=(14x-13)

Simple and best practice solution for (4x+13)(6x+2)=(14x-13) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+13)(6x+2)=(14x-13) equation:



(4x+13)(6x+2)=(14x-13)
We move all terms to the left:
(4x+13)(6x+2)-((14x-13))=0
We multiply parentheses ..
(+24x^2+8x+78x+26)-((14x-13))=0
We calculate terms in parentheses: -((14x-13)), so:
(14x-13)
We get rid of parentheses
14x-13
Back to the equation:
-(14x-13)
We get rid of parentheses
24x^2+8x+78x-14x+26+13=0
We add all the numbers together, and all the variables
24x^2+72x+39=0
a = 24; b = 72; c = +39;
Δ = b2-4ac
Δ = 722-4·24·39
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-12\sqrt{10}}{2*24}=\frac{-72-12\sqrt{10}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+12\sqrt{10}}{2*24}=\frac{-72+12\sqrt{10}}{48} $

See similar equations:

| 28+6x=4 | | (11x-1)+(20x-3)=29 | | 4x-18=10 | | 45+5y-9=17y-13-5y | | (11x-1)+(20x-3)=90 | | (31x-4)=90 | | 2c*3=12 | | –4(w−10)=–20 | | -37+25=-6x+9x | | –3p+–3p+5=17 | | -37+28=-6x+9x | | (11x-1)=(20x-3) | | 8=(−19−7n)n+7 | | 2/5x=2/15 | | 30=10j | | ⅔n-½=3.5 | | 60=6j | | 0.2x+14=25 | | ⅔n.5=4 | | y=2(4)-14 | | -4=2x-14 | | 6t+4t–2t=16 | | 7x/11=4x/9+19 | | 3(2x-9)=3(16-x) | | 0.67777777x.5=3.5 | | -10=1/2x-6 | | 7x−1=2x−1+5x | | X(2x-3)-2(3+2x)=-4(x+1 | | y=1/2(-6)-6 | | X+1=7x+12-11-6x | | 4.6-18.4=-0.4x+11.6 | | 2x-6=5x+17 |

Equations solver categories