(4x+6)3+14=4*(5-2x)4x

Simple and best practice solution for (4x+6)3+14=4*(5-2x)4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+6)3+14=4*(5-2x)4x equation:



(4x+6)3+14=4(5-2x)4x
We move all terms to the left:
(4x+6)3+14-(4(5-2x)4x)=0
We add all the numbers together, and all the variables
(4x+6)3-(4(-2x+5)4x)+14=0
We multiply parentheses
12x-(4(-2x+5)4x)+18+14=0
We calculate terms in parentheses: -(4(-2x+5)4x), so:
4(-2x+5)4x
We multiply parentheses
-32x^2+80x
Back to the equation:
-(-32x^2+80x)
We add all the numbers together, and all the variables
-(-32x^2+80x)+12x+32=0
We get rid of parentheses
32x^2-80x+12x+32=0
We add all the numbers together, and all the variables
32x^2-68x+32=0
a = 32; b = -68; c = +32;
Δ = b2-4ac
Δ = -682-4·32·32
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-68)-4\sqrt{33}}{2*32}=\frac{68-4\sqrt{33}}{64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-68)+4\sqrt{33}}{2*32}=\frac{68+4\sqrt{33}}{64} $

See similar equations:

| 5(2v-7)=4-17v | | 5*(2v-7)=4V-17 | | 9x+3=7x+-2 | | p-18=8 | | -6-y=-17 | | (-6)-y=(-17) | | 2x-5(2x+3)=5 | | 5x+27=64 | | B=19+3a/5 | | 2(x-9)+6(-x+2)+4x=0 | | x/2(x-9)+6(-x+2)+4x=0 | | .7(x–6)=7x–42 | | x×x-x-6=0 | | 30=5x+43 | | 144x2-16=9 | | 5x+5+2x+1+90=180 | | 4x^2-2x=64 | | 5x-38=2x+62 | | a/53=8 | | (5p+11+(8p-4)= | | 3(5-2x)+9=30 | | 4(2a-1)÷a=1 | | y-8=6/7+8 | | X3^+20x-8=0 | | n²+3n-110=0 | | X^3+20x-8=0 | | Y=5/2x+3/2 | | X^+20x-8=0 | | 5(x-1)=6(x-4) | | -4x-6=2x-8 | | 20+35x=200-20x | | 50=(x.3)+2 |

Equations solver categories