If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x-163)(2x-33)=180
We move all terms to the left:
(4x-163)(2x-33)-(180)=0
We multiply parentheses ..
(+8x^2-132x-326x+5379)-180=0
We get rid of parentheses
8x^2-132x-326x+5379-180=0
We add all the numbers together, and all the variables
8x^2-458x+5199=0
a = 8; b = -458; c = +5199;
Δ = b2-4ac
Δ = -4582-4·8·5199
Δ = 43396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43396}=\sqrt{4*10849}=\sqrt{4}*\sqrt{10849}=2\sqrt{10849}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-458)-2\sqrt{10849}}{2*8}=\frac{458-2\sqrt{10849}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-458)+2\sqrt{10849}}{2*8}=\frac{458+2\sqrt{10849}}{16} $
| b+32=41 | | 17x+4(-8-2)=-338 | | 4x-55=53-8x | | 3=8/x-5 | | 4x-15=28 | | 10y=50-20 | | -23-x=-5x+17 | | 10x+25=125x | | -9-x=1-6 | | x-82=-7x+54 | | 6x-1=3x-11 | | 12/25x=50 | | -7x-68=86+4x | | z/52=16 | | 13x^2-34=18 | | X^2+x=127 | | 5p-8=442 | | p+2p+3p+4p+5p=5p+1 | | 57+69+7x+5=180 | | 5x/2-x=x/10-(21/5) | | 5x+8=-3x+19 | | 6(r+1)=-6+4r | | 66=2b | | 45=5t+45 | | u=93-15 | | 1-5b=-3(-1+2b) | | u=93−15 | | 10=5/4q | | -95-x=-8x+52 | | y-52=20 | | 76+63+x+47=180 | | 7x(-4x-11)=23 |