If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x-20)(2x+30)=180
We move all terms to the left:
(4x-20)(2x+30)-(180)=0
We multiply parentheses ..
(+8x^2+120x-40x-600)-180=0
We get rid of parentheses
8x^2+120x-40x-600-180=0
We add all the numbers together, and all the variables
8x^2+80x-780=0
a = 8; b = 80; c = -780;
Δ = b2-4ac
Δ = 802-4·8·(-780)
Δ = 31360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31360}=\sqrt{3136*10}=\sqrt{3136}*\sqrt{10}=56\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-56\sqrt{10}}{2*8}=\frac{-80-56\sqrt{10}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+56\sqrt{10}}{2*8}=\frac{-80+56\sqrt{10}}{16} $
| -3(f=8)=39 | | 4(-5x+x)=20 | | 5u+2=2(u-8) | | 2x-2x-10+14=0 | | 3p+14=6 | | 7(x-9)=20 | | 13g+2=11g-7 | | 12x+12=4(3x+3) | | -6(a+1)=12 | | 12−2u=9u+45 | | 3(x+1)=-2(x-1)=6 | | 3(2x+6)=-48+42 | | 3x2=150 | | 5c=8c-9 | | 10x-27/2=8x | | 18=11y-5y | | 12m+60=7m | | 5h=11+4h | | 35+7x-40=-2x-6x+55 | | 140-a=72 | | .055y=33 | | 9w=20+5w | | 24+7x=x-30 | | g=16+9g | | 2(10z-3)=20z-4-2* | | 62+2n=70+4n | | 6w=5w+20 | | 4(x−7)=−16 | | 3x+1(5)=8x-24 | | 13x-4+3x+2=8 | | p−17=−28 | | 3x-12+12=5x-14 |