(4x-3)(3x-4)=(2-5)(6x-4)

Simple and best practice solution for (4x-3)(3x-4)=(2-5)(6x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-3)(3x-4)=(2-5)(6x-4) equation:



(4x-3)(3x-4)=(2-5)(6x-4)
We move all terms to the left:
(4x-3)(3x-4)-((2-5)(6x-4))=0
We add all the numbers together, and all the variables
(4x-3)(3x-4)-((-3)(6x-4))=0
We multiply parentheses ..
(+12x^2-16x-9x+12)-((-3)(6x-4))=0
We calculate terms in parentheses: -((-3)(6x-4)), so:
(-3)(6x-4)
We multiply parentheses ..
(-18x+12)
We get rid of parentheses
-18x+12
Back to the equation:
-(-18x+12)
We get rid of parentheses
12x^2-16x-9x+18x+12-12=0
We add all the numbers together, and all the variables
12x^2-7x=0
a = 12; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·12·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*12}=\frac{0}{24} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*12}=\frac{14}{24} =7/12 $

See similar equations:

| 29/15=1/2x | | 5x-9=3x+2x2 | | -0.5x+21=11.5x-39 | | 2x+8+3x=20 | | 3(3x+4)=2x−2 | | 2x+6=10-3x | | -9x-21=60 | | 4(3x+2)=4(2x+3)4x | | 6=14-2c | | 2.6x+4.3=14.7 | | {x}{2}-3=-7 | | 32+y=12 | | -5(1-5n)-5n=155 | | -13x-2=−13x−2 | | 6(10-5x)=-120 | | X/(11-x)=24/9 | | -3x+11=-44 | | 7x+1=4x+82 | | -2x+4+3x=8x-3 | | 7-7x=3x-73 | | u-9+4(2u+3)=-7(u+1) | | 9−r/5=15 | | -4.4=y/3+3.1 | | 5s−6=3s | | 3x+12=5x=4 | | 3p-8=4p-1 | | 6x=15+6x-15 | | 2(x+4)=2x-x+7 | | 1/4(8x-4)=-1+2x | | 5-3(3x-6)=4x+15 | | X=5m | | -4(-2-4v)+v=93 |

Equations solver categories