(4x-3)(5-x)=(x-5)(3x+1)

Simple and best practice solution for (4x-3)(5-x)=(x-5)(3x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-3)(5-x)=(x-5)(3x+1) equation:



(4x-3)(5-x)=(x-5)(3x+1)
We move all terms to the left:
(4x-3)(5-x)-((x-5)(3x+1))=0
We add all the numbers together, and all the variables
(4x-3)(-1x+5)-((x-5)(3x+1))=0
We multiply parentheses ..
(-4x^2+20x+3x-15)-((x-5)(3x+1))=0
We calculate terms in parentheses: -((x-5)(3x+1)), so:
(x-5)(3x+1)
We multiply parentheses ..
(+3x^2+x-15x-5)
We get rid of parentheses
3x^2+x-15x-5
We add all the numbers together, and all the variables
3x^2-14x-5
Back to the equation:
-(3x^2-14x-5)
We get rid of parentheses
-4x^2-3x^2+20x+3x+14x-15+5=0
We add all the numbers together, and all the variables
-7x^2+37x-10=0
a = -7; b = 37; c = -10;
Δ = b2-4ac
Δ = 372-4·(-7)·(-10)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(37)-33}{2*-7}=\frac{-70}{-14} =+5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(37)+33}{2*-7}=\frac{-4}{-14} =2/7 $

See similar equations:

| 26.4=6.6*n | | 5(3x-2)=2x+8 | | 2x+9x-3-5=6x-3 | | n*5.9=118 | | -8u+2(u+8)=-38 | | 7(v-2)=3v-34 | | 4(x+3)^2=9 | | 5(z-2)=3(3z+1)-2z | | 2x-3=10x=21+x | | 10=1+x² | | 1.8x+32=-x | | x+4/4=-10 | | -16+5y=-3 | | 3x-(x-10)=x-(3x-20) | | 2x+30=-3 | | 3x=3x-20 | | 2(5c+7)=1 | | 3x*x-20-7x=-7x-8 | | 3x^-20-7x=-7x-8 | | 4x-2=8x+12 | | 91x-12019237=15 | | 9x+5=4(x+10) | | 9u-6u=9 | | (3x-x)*5+8=18 | | 3x-10=12+x-4 | | 0,6x-2×=0 | | 3(-8+4)=7(2+x)-6 | | 5x+2÷8+4x-2÷5=-3 | | 4(-x+1)-2(3x-5)=0 | | 5x+2/8+4x-2/5=-3 | | 15x²-9=0 | | 7=-3+2y |

Equations solver categories