(4x-3)(x+7)=(1-5x)(x-3)

Simple and best practice solution for (4x-3)(x+7)=(1-5x)(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-3)(x+7)=(1-5x)(x-3) equation:



(4x-3)(x+7)=(1-5x)(x-3)
We move all terms to the left:
(4x-3)(x+7)-((1-5x)(x-3))=0
We add all the numbers together, and all the variables
(4x-3)(x+7)-((-5x+1)(x-3))=0
We multiply parentheses ..
(+4x^2+28x-3x-21)-((-5x+1)(x-3))=0
We calculate terms in parentheses: -((-5x+1)(x-3)), so:
(-5x+1)(x-3)
We multiply parentheses ..
(-5x^2+15x+x-3)
We get rid of parentheses
-5x^2+15x+x-3
We add all the numbers together, and all the variables
-5x^2+16x-3
Back to the equation:
-(-5x^2+16x-3)
We get rid of parentheses
4x^2+5x^2+28x-3x-16x-21+3=0
We add all the numbers together, and all the variables
9x^2+9x-18=0
a = 9; b = 9; c = -18;
Δ = b2-4ac
Δ = 92-4·9·(-18)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-27}{2*9}=\frac{-36}{18} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+27}{2*9}=\frac{18}{18} =1 $

See similar equations:

| -113+7x=108-10 | | x+(.07x)=116.63 | | 10m-2/5=9+3/5 | | y=308 | | 3^(2x-5)=7 | | -r+-4=2 | | 1/6x+8-1/5=9 | | 47=w-(-8 | | 3x^​2​​+36x+81=0 | | 2y-5(-1)=0 | | -12x+5+8x=2x-16 | | 3m-7=4m+3 | | 6x=2=-4 | | 4x+6=2+3(x+2 | | 6×(3x+4)=5×(2x+8) | | 7/8x-3/4=3 | | 7p+12+12p=8-18 | | 2y-5(-2)=0 | | F+3=2f+1 | | 8x=907x=90 | | B(x+7)2=69 | | 4x+35+15=9x-45 | | 3-(5x+6)=17 | | B(x+7)=69 | | 56=-8(y+1) | | 4x+6=2+3(3x+2) | | -5(2x+6)=-3(-4+x0 | | (7x2)=69 | | 9e+4=14+8e9e+4=14+8e | | 9=1-2s | | 2y-2=-2-4y | | 10=0.50(20)=b |

Equations solver categories