If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x-9)/(x-1)=2/2x-2
We move all terms to the left:
(4x-9)/(x-1)-(2/2x-2)=0
Domain of the equation: (x-1)!=0
We move all terms containing x to the left, all other terms to the right
x!=1
x∈R
Domain of the equation: 2x-2)!=0We get rid of parentheses
x∈R
(4x-9)/(x-1)-2/2x+2=0
We calculate fractions
(8x^2-18x)/(2x^2-2x)+(-2x+2)/(2x^2-2x)+2=0
We multiply all the terms by the denominator
(8x^2-18x)+(-2x+2)+2*(2x^2-2x)=0
We multiply parentheses
4x^2+(8x^2-18x)+(-2x+2)-4x=0
We get rid of parentheses
4x^2+8x^2-18x-2x-4x+2=0
We add all the numbers together, and all the variables
12x^2-24x+2=0
a = 12; b = -24; c = +2;
Δ = b2-4ac
Δ = -242-4·12·2
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{30}}{2*12}=\frac{24-4\sqrt{30}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{30}}{2*12}=\frac{24+4\sqrt{30}}{24} $
| -3(6x-8)+6=-18x+30 | | (4x-9)/(2x-4)=1/2 | | X+0.25x=16 | | (x+4)/(2x-1)=0 | | 7.9=14a+20 | | 16b+b^2=132 | | 14a=12.1 | | 13x+2=3x-4+5x-7 | | 8.9/12=3/n | | 2. 13b-9=3b+4 | | (5x+6)-(5-4x)=-10 | | Y=x2+3x-6x3-8 | | 2n+3n+4n=36* | | x4+x3+4x2+4x=0 | | 16/12=20/y | | x=100*(1.22)^ | | 6/6y=50/90 | | y=100*(1.22)^ | | 3x-15=99 | | 24/10y=54/130 | | 9q2−24q+16=0 | | 2n/3n=15 | | 3+x+5=2x+5 | | 7a-3=3(a+9)+4a | | 2x-2+2x-10=12 | | 4y-3=2y | | Y=4x2+3x+2 | | n/52=180/120= | | 0.3+x/2=0.15x+2 | | F(-3)=6/x-3 | | x-7.8=2.5 | | x+(1/10)x=89 |