If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x^2)=42
We move all terms to the left:
(4x^2)-(42)=0
a = 4; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·4·(-42)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*4}=\frac{0-4\sqrt{42}}{8} =-\frac{4\sqrt{42}}{8} =-\frac{\sqrt{42}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*4}=\frac{0+4\sqrt{42}}{8} =\frac{4\sqrt{42}}{8} =\frac{\sqrt{42}}{2} $
| 1/3x+1/3=3/7-2/3x+3/7 | | 4.6q-5.1-5.8q=-0.2q-5.1 | | -8(x+1)-3=2(x-2) | | -30=-5/4w | | X+4(6-x)=20 | | -3y(y-8)(y+7)=0 | | -3u-7=2u+8 | | 26+4=2x | | 6.6p-9=5.6p-9 | | -8(y+2)=7y-1 | | x-8.6=-4.3 | | 2+1y=35 | | p+12.1=-7.1 | | x-3+4=30 | | 5^(2x)=7^(x-1) | | -2x+5x-4x=0 | | W^2+4x=0 | | 2x^2-7x=160 | | 6x+2x=6x+64/8 | | -5/8s=-10 | | -x(4)+1=2x(2)-3 | | 6)4+3n=13 | | -3.8x=58.90 | | 6x+2x=5x+27/9 | | F(x)=10•3 | | 7+6y=11y-1 | | 10(0.2+0.4c)=10c+0.2-6 | | 5^(8x)=625 | | -(-x-4)=2x+6 | | 4(−4x+3)−3x+4=−174 | | 3x^2-8=-12 | | 1/5z=0 |