(4x2-6x+7)+(-19x2+(7x+5)=)

Simple and best practice solution for (4x2-6x+7)+(-19x2+(7x+5)=) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x2-6x+7)+(-19x2+(7x+5)=) equation:



(4x^2-6x+7)+(-19x^2+(7x+5)=)
We move all terms to the left:
(4x^2-6x+7)+(-19x^2+(7x+5)-())=0
We get rid of parentheses
(-19x^2+(7x+5)-())+4x^2-6x+7=0
We calculate terms in parentheses: +(-19x^2+(7x+5)-()), so:
-19x^2+(7x+5)-()
We add all the numbers together, and all the variables
-19x^2+(7x+5)
We get rid of parentheses
-19x^2+7x+5
Back to the equation:
+(-19x^2+7x+5)
We add all the numbers together, and all the variables
4x^2+(-19x^2+7x+5)-6x+7=0
We get rid of parentheses
4x^2-19x^2+7x-6x+5+7=0
We add all the numbers together, and all the variables
-15x^2+x+12=0
a = -15; b = 1; c = +12;
Δ = b2-4ac
Δ = 12-4·(-15)·12
Δ = 721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{721}}{2*-15}=\frac{-1-\sqrt{721}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{721}}{2*-15}=\frac{-1+\sqrt{721}}{-30} $

See similar equations:

| 6x-8+28-7x=4x | | 2(x-3)=8-3(x-2) | | 612=0.136x | | 612=0.1236x | | -3/8x=13 | | -7x-6=-62 | | 3t2)-4t-5=0 | | x+2x+12=36 | | 17+4y=45 | | 5x=40x1/2 | | 5x=401/2 | | 20+x+2=42 | | 5a-7=58 | | 30+15x=27x/5+46 | | 6.94x2+4.13x=9.46 | | 15/x+4=3x | | X/4+28/2+9=x/2+x-27 | | 3+4*7x=20x+29 | | c=60+4X40 | | x+25°+x°=180° | | 5+x/6=2x-0,5 | | (3x-5)+(2x-10)=180° | | 5x+(-5)=180° | | 1x/3+15=1x/4 | | 4z+7=-2 | | 48+2x=72 | | 15=200-10x | | .32x=152.1 | | 2p-3/4+7=6p-5/4+9 | | 20÷2x=5 | | Y=18+2(x-5) | | -27=-7+v/5 |

Equations solver categories