If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4z+3)(5z)=150
We move all terms to the left:
(4z+3)(5z)-(150)=0
We multiply parentheses
20z^2+15z-150=0
a = 20; b = 15; c = -150;
Δ = b2-4ac
Δ = 152-4·20·(-150)
Δ = 12225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12225}=\sqrt{25*489}=\sqrt{25}*\sqrt{489}=5\sqrt{489}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{489}}{2*20}=\frac{-15-5\sqrt{489}}{40} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{489}}{2*20}=\frac{-15+5\sqrt{489}}{40} $
| -4(x-2)-2(x+8)=22 | | 9+4x=5+4 | | 9x+8=6x+7=180 | | 3y-6(y-8)=42 | | -4+4a=8a+16 | | X/3z=3 | | 2(x-3)+1=5x-3(2+x) | | 3x2=6 | | 10+x=2x-5=25 | | 5/2-2/2t=3+3/2t | | x2−7x=−25 | | 5x+15=-10x+3 | | 10w=3w+35 | | (3)x2x+61=77 | | 6(x/2+x/3)=(5x+2/6)6 | | 3(2x)+61=77 | | 6(20-2x)+5=4(2x+6)+1 | | (2t3)+61=77 | | 4(b-74)-40=48 | | C=39.77+0.25x | | y/5-12=23 | | t+3.4=12.6 | | h+8.6=11.1 | | (2x)+61=77 | | 30=t÷5-10 | | 1/2x+1/3x=20 | | 2(x+1)-3x=16 | | 43=37+u | | 14.53+.09(x+3)=15.28-0.15x | | 15=13-j | | 3(5x+2)-x=-1+7(x-2) | | 5=15-b |