If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4z+3)(5z)=96
We move all terms to the left:
(4z+3)(5z)-(96)=0
We multiply parentheses
20z^2+15z-96=0
a = 20; b = 15; c = -96;
Δ = b2-4ac
Δ = 152-4·20·(-96)
Δ = 7905
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{7905}}{2*20}=\frac{-15-\sqrt{7905}}{40} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{7905}}{2*20}=\frac{-15+\sqrt{7905}}{40} $
| k−16=233 | | s+6=30 | | (x+7)(x+3)=396 | | 3+9n=0 | | g+13=53 | | 5x+(-x)-1=-2x | | u+18=96 | | -12x^2-26x-60=0 | | 14s+5-3(3s-6)=5+6(s=3) | | 9+6s-3s+17=2s+18+3s | | 9+6s-3s+17=25+18+3s= | | Y=-4x+100 | | 2/3•w=30 | | y2–12y+11=0 | | 12y+48=180-8y-40 | | 2(x-3)-1=x+8 | | x+44=180-x | | 9x-3=3x+3 | | (36x-12)-5x=10 | | x-355+x+80-x=2425 | | x^2-5x-450=0 | | 12q+7-3q=8+9q=25=5q= | | 3x^2-4x=172 | | 360=x(4x+5) | | 7(4v-5)=-27 | | x-0.04x=84 | | 180-150p=120-20p | | 2x+3=5x(3 | | 11x-1=7x-17=180 | | -8(4n+2)=-26+7n | | 5x+36=180-3x | | 2h/15=60 |