(4z+3)2+(5z)2=150Z=

Simple and best practice solution for (4z+3)2+(5z)2=150Z= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4z+3)2+(5z)2=150Z= equation:



(4z+3)2+(5z)2=150=
We move all terms to the left:
(4z+3)2+(5z)2-(150)=0
We add all the numbers together, and all the variables
5z^2+(4z+3)2-150=0
We multiply parentheses
5z^2+8z+6-150=0
We add all the numbers together, and all the variables
5z^2+8z-144=0
a = 5; b = 8; c = -144;
Δ = b2-4ac
Δ = 82-4·5·(-144)
Δ = 2944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2944}=\sqrt{64*46}=\sqrt{64}*\sqrt{46}=8\sqrt{46}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{46}}{2*5}=\frac{-8-8\sqrt{46}}{10} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{46}}{2*5}=\frac{-8+8\sqrt{46}}{10} $

See similar equations:

| c(300)=21 | | -12=4+z | | 1-y/12=6 | | -3(s+59)=57 | | 6.7-0.6b=3.84+2b | | 20-2=7x | | X+2x+9x=180 | | 5-x=28+7x | | (4z+3)2+(5z)2=150 | | -12=-2n | | 12=-5+r | | 4(x+3)+15=47 | | 2(j-73)-58=-48 | | 24=-3f | | 2n+2=3n-15 | | -12x-9=-9 | | -13=y-5 | | 1/5w+3=6 | | -9x-5=76 | | (4z+3)(5z)=150 | | -4(x-2)-2(x+8)=22 | | 9+4x=5+4 | | 9x+8=6x+7=180 | | 3y-6(y-8)=42 | | -4+4a=8a+16 | | X/3z=3 | | 2(x-3)+1=5x-3(2+x) | | 3x2=6 | | 10+x=2x-5=25 | | 5/2-2/2t=3+3/2t | | x2−7x=−25 | | 5x+15=-10x+3 |

Equations solver categories