(5)/(x+6)+(2)/(x)=2

Simple and best practice solution for (5)/(x+6)+(2)/(x)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5)/(x+6)+(2)/(x)=2 equation:



(5)/(x+6)+(2)/(x)=2
We move all terms to the left:
(5)/(x+6)+(2)/(x)-(2)=0
Domain of the equation: (x+6)!=0
We move all terms containing x to the left, all other terms to the right
x!=-6
x∈R
Domain of the equation: x!=0
x∈R
We calculate fractions
5x/(x^2+6x)+(2x+12)/(x^2+6x)-2=0
We multiply all the terms by the denominator
5x+(2x+12)-2*(x^2+6x)=0
We multiply parentheses
-2x^2+5x+(2x+12)-12x=0
We get rid of parentheses
-2x^2+5x+2x-12x+12=0
We add all the numbers together, and all the variables
-2x^2-5x+12=0
a = -2; b = -5; c = +12;
Δ = b2-4ac
Δ = -52-4·(-2)·12
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-11}{2*-2}=\frac{-6}{-4} =1+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+11}{2*-2}=\frac{16}{-4} =-4 $

See similar equations:

| P+x/2=48 | | -3(w+8)=6w+48 | | 3/x-1+8/x=3 | | 32+3y-9=13y-13-4y | | Y=3000+0.05x | | 3r+12*4=4r-24*9 | | 7^(x^2-33)=49^4x | | 70=2(20+w) | | X^2(x-4)=-16 | | 3r+12/9=4r-24/4 | | 1=r+4 | | 4/5(x-2)=1/3(x+4) | | 3r+12/6=2r-4/2 | | 0.1n-2n=0.2(n-3) | | 6.5x+5.5(300-x)=1850 | | 4n-23/4=22.3/4 | | x+0.13x=2760 | | 8x-39=(x-3) | | 2(v+2)=-3v+49 | | 7/4x-13/6=3/4x-19/16 | | 5x+42=12x | | 2(7x+7)=13x+7 | | 24-(x+3)=12+(18-4x) | | 4x+8+3x=5x+11+x | | 3(v+6)=-5v-22 | | 12x-4=11x-2 | | 180(a-2)=720 | | 14x=13x+2 | | y+5y+4y=8 | | X-y=y+10 | | 1+10X1=a | | 15+5(2-3)=4z+1 |

Equations solver categories