(5*5)+(6*6)=(x*x)

Simple and best practice solution for (5*5)+(6*6)=(x*x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5*5)+(6*6)=(x*x) equation:



(5*5)+(6*6)=(x*x)
We move all terms to the left:
(5*5)+(6*6)-((x*x))=0
We add all the numbers together, and all the variables
-((+x*x))+25+36=0
We add all the numbers together, and all the variables
-((+x*x))+61=0
We calculate terms in parentheses: -((+x*x)), so:
(+x*x)
We get rid of parentheses
x*x
Wy multiply elements
x^2
Back to the equation:
-(x^2)
We add all the numbers together, and all the variables
-1x^2+61=0
a = -1; b = 0; c = +61;
Δ = b2-4ac
Δ = 02-4·(-1)·61
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{61}}{2*-1}=\frac{0-2\sqrt{61}}{-2} =-\frac{2\sqrt{61}}{-2} =-\frac{\sqrt{61}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{61}}{2*-1}=\frac{0+2\sqrt{61}}{-2} =\frac{2\sqrt{61}}{-2} =\frac{\sqrt{61}}{-1} $

See similar equations:

| 35=-7(y+3) | | X+8.2=2x | | 3,5+7,5=x+2,5 | | 3/8-1/2a=12a | | 23t+144=-17 | | 94-3x=¤ | | 5s−3=57 | | 4x-9=35-7x | | 103=y-16 | | 94=t+17 | | 2√x-4+1=5 | | 5/f=7.5/550•3 | | 3/x-14=-2 | | p+89=245 | | y/5+9=-1 | | 3x-15=-99 | | 8y+38=2(y-5) | | 40+2x°=180 | | 14/5c+32=32 | | 40n=50 | | 5(x-2)+3x=8x-10 | | x+.12x=200 | | 12=s2+ 9 | | (5z-6)(2z+5)=90 | | X=6y-28 | | 7+0.20x=5+ | | 4n+2=-6 | | –78=8c+6c+6 | | 8m=36=44 | | 115+x+x+x=180 | | -14b=44 | | 14+c=49= |

Equations solver categories