If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5+x)(x)=403
We move all terms to the left:
(5+x)(x)-(403)=0
We add all the numbers together, and all the variables
(x+5)x-403=0
We multiply parentheses
x^2+5x-403=0
a = 1; b = 5; c = -403;
Δ = b2-4ac
Δ = 52-4·1·(-403)
Δ = 1637
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1637}}{2*1}=\frac{-5-\sqrt{1637}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1637}}{2*1}=\frac{-5+\sqrt{1637}}{2} $
| 5x+4x+6x=24 | | 4(1-3n)-14=4(2n+3) | | 2/9=3m | | -37=3+5v | | 1.1q-4.7-2.9q=-2.8q-3.5 | | -2(2s-3)-6=-3(3s+5)-5 | | -2+g/5=-5 | | -4g=-9−5g | | 4(1+2m)=-38+m | | 1/3+5x=4/3 | | -9=-3+f/6 | | 121=(11×z)-23 | | -10+2k=24 | | 2x°+6°=38 | | -18=2-4a | | -5h+2=57 | | -8-p=12 | | 6x2+16x=0 | | x/2+x/4+30=180 | | A+(b-19)÷2=111 | | 3(3x+1)=2x+18 | | 12=-4(—6x-3) | | -6y+17=3y-2 | | A+b-19=111÷2 | | 7n-2(n+5)=n-16 | | 9-p/2=-1 | | X²–y+4=0 | | 5-3g=-22 | | 2v-9=23 | | A+b-19=111 | | 65=3y+8 | | -5-4x=2x+31 |