If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5+x)+(5-x)+5x+(5/x)=252
We move all terms to the left:
(5+x)+(5-x)+5x+(5/x)-(252)=0
Domain of the equation: x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(x+5)+(-1x+5)+5x+(+5/x)-252=0
We add all the numbers together, and all the variables
5x+(x+5)+(-1x+5)+(+5/x)-252=0
We get rid of parentheses
5x+x-1x+5/x+5+5-252=0
We multiply all the terms by the denominator
5x*x+x*x-1x*x+5*x+5*x-252*x+5=0
We add all the numbers together, and all the variables
-242x+5x*x+x*x-1x*x+5=0
Wy multiply elements
5x^2+x^2-1x^2-242x+5=0
We add all the numbers together, and all the variables
5x^2-242x+5=0
a = 5; b = -242; c = +5;
Δ = b2-4ac
Δ = -2422-4·5·5
Δ = 58464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{58464}=\sqrt{144*406}=\sqrt{144}*\sqrt{406}=12\sqrt{406}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-242)-12\sqrt{406}}{2*5}=\frac{242-12\sqrt{406}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-242)+12\sqrt{406}}{2*5}=\frac{242+12\sqrt{406}}{10} $
| 0.4+x/2.8=-2.6 | | 2x²-11=7x | | -6(4+2c)+-5=8c+51 | | 10-5x=20-3x | | -2x^2+x=11 | | 2x^2+x=11 | | 40=-2(4)r | | 7/2=21/3y | | A=πr(2) | | 57=-3-5c | | 2(-2+x)=14 | | 3(+4)=5(x-1)+32 | | 3x+5+8x+9=113 | | X+x2=96 | | (50x120)÷10=N | | 15x-4x=66 | | 15x-4x=66 | | 6.5+y=42.25 | | 8c-4c=-47+27 | | X+11x/3=7/12 | | 9/45=3/c | | -3(-8v+3)-3v=6(v-1)-9 | | 2/3x-4=-5+5/6x | | 10x^2-3x-6=0 | | (7x+6)(x+3)=0 | | 8x+(4.64-3.64)=200 | | 7x-10+2x+41=90 | | n+7=-2n-9 | | 6x^2+15x+1=4x-2 | | (3k-5)(4k+5)=0 | | 5y+32=-2 | | 8+3n=8+4n |