(5-9a)=(4a2+6a-3)

Simple and best practice solution for (5-9a)=(4a2+6a-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5-9a)=(4a2+6a-3) equation:



(5-9a)=(4a^2+6a-3)
We move all terms to the left:
(5-9a)-((4a^2+6a-3))=0
We add all the numbers together, and all the variables
(-9a+5)-((4a^2+6a-3))=0
We get rid of parentheses
-9a-((4a^2+6a-3))+5=0
We calculate terms in parentheses: -((4a^2+6a-3)), so:
(4a^2+6a-3)
We get rid of parentheses
4a^2+6a-3
Back to the equation:
-(4a^2+6a-3)
We get rid of parentheses
-4a^2-9a-6a+3+5=0
We add all the numbers together, and all the variables
-4a^2-15a+8=0
a = -4; b = -15; c = +8;
Δ = b2-4ac
Δ = -152-4·(-4)·8
Δ = 353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{353}}{2*-4}=\frac{15-\sqrt{353}}{-8} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{353}}{2*-4}=\frac{15+\sqrt{353}}{-8} $

See similar equations:

| 1+0.5b=b | | 1+0.5b=b | | a/4​+2=3 | | 3(2n+7)=4(8-n | | 5x+10=4x-16 | | |4x–7|=9 | | X-4/5=x+2/4 | | 5+42x=21x=29 | | 2x-x/2=1 | | 1x+4=x-1 | | 6(x-1=72 | | 11x5/3=x | | 3(n-4)=2(5n+1) | | a2/4=37=57 | | g(-2)=4(-2)²-3(-2)+5 | | 1.2x100=N | | 6(x-6)-(3x-6)=0 | | 6(x-6)-3x-6)=0 | | 15x-x^2=70 | | 30°+3x=180° | | 10y+9y=13 | | ×+14=3x | | 10y+9y= | | 10y+9y= | | 1,16p+0,08-0,16p+0,32=0 | | 0,3b-0,75=0,7b+0,25 | | 6x-7=2x+3(x-2) | | x(x+4)(x+5)=720 | | 3x-4(x+1)=1-6x | | 3x-4(x+1)=1+-6x | | 7x-9=-6+4 | | k*k*k=28 |

Equations solver categories