(5-x)2=25-10x-x2

Simple and best practice solution for (5-x)2=25-10x-x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5-x)2=25-10x-x2 equation:



(5-x)2=25-10x-x2
We move all terms to the left:
(5-x)2-(25-10x-x2)=0
We add all the numbers together, and all the variables
-(-10x-1x^2+25)+(-1x+5)2=0
We multiply parentheses
-(-10x-1x^2+25)-2x+10=0
We get rid of parentheses
1x^2+10x-2x-25+10=0
We add all the numbers together, and all the variables
x^2+8x-15=0
a = 1; b = 8; c = -15;
Δ = b2-4ac
Δ = 82-4·1·(-15)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{31}}{2*1}=\frac{-8-2\sqrt{31}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{31}}{2*1}=\frac{-8+2\sqrt{31}}{2} $

See similar equations:

| (2x+30)°=(2x-10)° | | 3x+8=2x=10 | | (2x+43)°=(2x-3)° | | 12+2x=-5x+33 | | 15+x-5=10+x | | (2x-3)(2x+3)=(2x-3) | | 11=20-p | | 11a-9/5=7 | | 9x-12=2x-61 | | -5+15x=100* | | 18+7x=1+8x | | -5x+15=110 | | m-(60m)/(40)=-4 | | 13x-2=11x+14 | | 13y+25=64; | | 5×+7=2x-2 | | x-0,3x=5040 | | 5y-4/3=7*3 | | 4x=16,8 | | x​ =23​  | | -4-3x=20 | | 2,10x=36,9 | | 6x+3=2x–7 | | 7x=30+2 | | 2.10x=36.9 | | 6x+3=2x–7= | | 4(x+8)=–40 | | 5(x+2)+12=46-3x | | (3x+4)=39 | | 7x+12=23-x | | -3y+8=-5y | | 2x·x=18 |

Equations solver categories