If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5/10)(x+40)=30
We move all terms to the left:
(5/10)(x+40)-(30)=0
Domain of the equation: 10)(x+40)!=0We add all the numbers together, and all the variables
x∈R
(+5/10)(x+40)-30=0
We multiply parentheses ..
(+5x^2+5/10*40)-30=0
We multiply all the terms by the denominator
(+5x^2+5-30*10*40)=0
We get rid of parentheses
5x^2+5-30*10*40=0
We add all the numbers together, and all the variables
5x^2-11995=0
a = 5; b = 0; c = -11995;
Δ = b2-4ac
Δ = 02-4·5·(-11995)
Δ = 239900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{239900}=\sqrt{100*2399}=\sqrt{100}*\sqrt{2399}=10\sqrt{2399}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2399}}{2*5}=\frac{0-10\sqrt{2399}}{10} =-\frac{10\sqrt{2399}}{10} =-\sqrt{2399} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2399}}{2*5}=\frac{0+10\sqrt{2399}}{10} =\frac{10\sqrt{2399}}{10} =\sqrt{2399} $
| 12x-3=x+1 | | 11b=4b+98 | | (3-i)(4+7i)+3i(1-i)-1=0 | | 4m+3/3=5 | | 4(2w-1)=7w+1 | | (5+3i)(3+5i)=0 | | 8*9^(x-3)+4^(x-3)=3^(2x-4) | | (4+i)+(2-i)-(1-i)=0 | | H(x)=5x2-30x+30 | | (-1+2i)-(4-3i)=0 | | (2+5i)+(4+3i)=0 | | 42-x=-42 | | Q=60-0,3p | | 4x= 14x | | Q=30+0,2p | | X/1+3/x=13/2 | | (x-7)/(2)=(-3)/(x-2) | | 4(3x-2)=2-5 | | 8+4i/5=10 | | 90x=10 | | 20=3+13b/7 | | 4x=+7 | | 5x+3=8x4 | | (3x+4)=(4x+3) | | 5X-2=|13x-26| | | 0=-16t^2+29t-11 | | 0=-16t^2+24t-11 | | 35n=315 | | 5x-3x-2x=3 | | P(x)=0.04x^2+240x-1000 | | x+0.3x=17 | | 0=-16t^2+29t+36 |