(5/12)(n)=7/12

Simple and best practice solution for (5/12)(n)=7/12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/12)(n)=7/12 equation:



(5/12)(n)=7/12
We move all terms to the left:
(5/12)(n)-(7/12)=0
Domain of the equation: 12)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+5/12)n-(+7/12)=0
We multiply parentheses
5n^2-(+7/12)=0
We get rid of parentheses
5n^2-7/12=0
We multiply all the terms by the denominator
5n^2*12-7=0
Wy multiply elements
60n^2-7=0
a = 60; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·60·(-7)
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{105}}{2*60}=\frac{0-4\sqrt{105}}{120} =-\frac{4\sqrt{105}}{120} =-\frac{\sqrt{105}}{30} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{105}}{2*60}=\frac{0+4\sqrt{105}}{120} =\frac{4\sqrt{105}}{120} =\frac{\sqrt{105}}{30} $

See similar equations:

| 152=20πr^2+πr^2 | | 3p-7=6p+10 | | x=15(6)+5x | | 17-5x=2(1-7x)+6 | | 3/8(16-40n)+-18=8 | | x3=8/64 | | -53=10m+7 | | −14=−2(1−2​x+−18) | | Z+2z+z=6-4 | | 3x-5=-57 | | 4+6m=5 | | 6(x−7)+x=7(x−8)+14 | | 16d+28=9d | | 8/4x+2/8x=45/12 | | 2(m-5)=-25 | | 3x+6=-56 | | 2(2v+)=50 | | -4x-2=x+8 | | 4x+6=-57 | | -57=-3(6x+7) | | 0.20(y-8)+0.06=0.02y-0.1 | | 3x^2+19=67 | | x^2+40x+184=360 | | 3x+7=-57 | | 214=-20(x-9)-(-20-18) | | 3x-14-1/3x=x+1/6-5 | | x^2+40x+184=0 | | -3x4=4 | | 3(8x-3)=159 | | -102=-2(8x+3) | | 1/5(k-6)=3/5(k+2) | | 3+6x+3=-24 |

Equations solver categories