(5/2)(x)+(x-4)/2=11

Simple and best practice solution for (5/2)(x)+(x-4)/2=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/2)(x)+(x-4)/2=11 equation:



(5/2)(x)+(x-4)/2=11
We move all terms to the left:
(5/2)(x)+(x-4)/2-(11)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/2)x+(x-4)/2-11=0
We multiply parentheses
5x^2+(x-4)/2-11=0
We multiply all the terms by the denominator
5x^2*2+(x-4)-11*2=0
We add all the numbers together, and all the variables
5x^2*2+(x-4)-22=0
Wy multiply elements
10x^2+(x-4)-22=0
We get rid of parentheses
10x^2+x-4-22=0
We add all the numbers together, and all the variables
10x^2+x-26=0
a = 10; b = 1; c = -26;
Δ = b2-4ac
Δ = 12-4·10·(-26)
Δ = 1041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1041}}{2*10}=\frac{-1-\sqrt{1041}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1041}}{2*10}=\frac{-1+\sqrt{1041}}{20} $

See similar equations:

| 9e=4=14+8e | | -3x+-5x=21-8x | | 5/2x+(x-4)/2=11 | | 9e=4=14+8 | | -(6+-n)=6(-8-6n)+5 | | X=3+4*3x | | 2/3x+15=x | | 1/2+1/3x=10 | | 5z+4(4-z)=-(-z-4)+10 | | -5-(2-x)=-3 | | 3.14/m=7.3 | | x+x+44=146 | | 1+3n+6-4n=-3(n+3)-2(-n+4) | | x-11/7=8 | | 1/3f-3=-6 | | 1.5d0.5(7d+4)=7−1.5d0 | | -9x+3+4x=1/2(2x+66) | | g(2)=-2+5 | | -6x=-5(x-1)-x | | 1/3z+1/5z=3/5 | | 5/u=2/7.5 | | x=5-1.5 | | -11x+9=-90 | | x/8=21/14= | | 7(x-5)=x+13 | | 2(-3v+5)-(1-3v)=-15 | | 1.5(x+1.4)=13.4 | | 2w-3=-5 | | 5a−8=8+a | | 6=4-n | | 2^(2t)=0 | | 0.8m-0.2=0.18m-1.32 |

Equations solver categories