(5/2)*z-7=23

Simple and best practice solution for (5/2)*z-7=23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/2)*z-7=23 equation:



(5/2)*z-7=23
We move all terms to the left:
(5/2)*z-7-(23)=0
Domain of the equation: 2)*z!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
(+5/2)*z-7-23=0
We add all the numbers together, and all the variables
(+5/2)*z-30=0
We multiply parentheses
5z^2-30=0
a = 5; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·5·(-30)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{6}}{2*5}=\frac{0-10\sqrt{6}}{10} =-\frac{10\sqrt{6}}{10} =-\sqrt{6} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{6}}{2*5}=\frac{0+10\sqrt{6}}{10} =\frac{10\sqrt{6}}{10} =\sqrt{6} $

See similar equations:

| 1-2k-3=2-3/4k | | U(x)=-3x²+240x-3600 | | 3t+15=27 | | -3p-5=2(5-4p) | | 2x-7=3x-3x+3 | | X2+y2=91 | | 1+x/5=4x/15 | | 15=30/2x | | x÷4-8=5 | | 9m+8=3m+44 | | y=800+7 | | -100z=5 | | 100z=-5 | | 7x=56-7 | | p-7=-2+11 | | 5=-100z | | x2+35x=105 | | 25^x+5^(1+2x)-40=0 | | 2-3x-2x2,x=-3 | | 25=-3(22-y)+2y-2 | | -10+10=16+r | | 16t^2+192t+320=0 | | Y=-49x-66 | | 18-4f=5f | | Y=36x-75 | | y=75+100 | | 7x‐6=16 | | 7+5c=42 | | −7=2z​+1 | | 2v-3=—v/8 | | 31+a=2a+12 | | 23x-23=8x+27 |

Equations solver categories