(5/2)x+(1/3)=2

Simple and best practice solution for (5/2)x+(1/3)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/2)x+(1/3)=2 equation:



(5/2)x+(1/3)=2
We move all terms to the left:
(5/2)x+(1/3)-(2)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (5/2)x-2+(1/3)=0
We add all the numbers together, and all the variables
(+5/2)x-2+(+1/3)=0
We multiply parentheses
5x^2-2+(+1/3)=0
We get rid of parentheses
5x^2-2+1/3=0
We multiply all the terms by the denominator
5x^2*3+1-2*3=0
We add all the numbers together, and all the variables
5x^2*3-5=0
Wy multiply elements
15x^2-5=0
a = 15; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·15·(-5)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*15}=\frac{0-10\sqrt{3}}{30} =-\frac{10\sqrt{3}}{30} =-\frac{\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*15}=\frac{0+10\sqrt{3}}{30} =\frac{10\sqrt{3}}{30} =\frac{\sqrt{3}}{3} $

See similar equations:

| r+15/9=7 | | 3t=60t+72 | | 8k-2=3k+33 | | 5/8x3/5=1/2 | | 7-5n=-5-7n | | -26+2x=-x+7 | | -7-11w-13=11w-1 | | 8x-8+4x=16 | | d=20(10^-0.602d) | | −5x−1=−3(1+x) | | -56+x=921 | | 30=6(c−92) | | 3u−2=10+5u | | 1/4m–7=2 | | 7+b=12 | | 10x-48=3x-4(2) | | -8x-17=x-8 | | 0=180-(90+x) | | 32-8m=8 | | 1/12.5/1=g/10 | | 10(k-93)=30 | | 2500=20,000(0.75^x | | 3x/2+11/2=x-4 | | 3(v+5)=-3(6v-4)+3v | | 6t+20=-18t-8 | | 8z-32=z+31 | | 20+2x=4x-6 | | -4-5a=-6a+2a | | 4x+6=5•5x | | b+3=−3 | | X=7-3y/2 | | 5d-20=d+16 |

Equations solver categories