(5/6)(x)-2x+(4/3)=(5/3)

Simple and best practice solution for (5/6)(x)-2x+(4/3)=(5/3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/6)(x)-2x+(4/3)=(5/3) equation:



(5/6)(x)-2x+(4/3)=(5/3)
We move all terms to the left:
(5/6)(x)-2x+(4/3)-((5/3))=0
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/6)x-2x+(+4/3)-((+5/3))=0
We add all the numbers together, and all the variables
-2x+(+5/6)x+(+4/3)-((+5/3))=0
We multiply parentheses
5x^2-2x+(+4/3)-((+5/3))=0
We get rid of parentheses
5x^2-2x+4/3-((+5/3))=0
We calculate fractions
5x^2-2x=0
a = 5; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·5·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*5}=\frac{0}{10} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*5}=\frac{4}{10} =2/5 $

See similar equations:

| x^2/2=48 | | 1,8-x=0,15 | | 6(1-x)+)3x=2-6 | | F(x)=^2-2x-8 | | 2(2x-4)+1=5 | | (2x-4)+1=5 | | a+90°+a=180° | | a+90°+a=180′ | | |8+5x|=37 | | -4(h+5)=16 | | -6x4–=18x3 | | 3x2-4=27x | | 124d+6+5=10 | | 8x-24)/(2x2-x-15)=0 | | -97=-6+7x | | 49-x=182 | | 2x–9=28 | | 3.n=30 | | q/25=20 | | 6(4m+17)=124 | | -12n+5=8n,n=-5/4 | | x=900+0.25x | | x2-8x+32=4 | | 5+6(m-1)=26 | | -3(8p+2)-2(6-20p)-3(5+5p)=0 | | 179=(20x-5)+(17x-1) | | X=y^2-6y-16 | | 13x−57=24+4x | | 3x-28=5-28 | | 1.21=(1+i)2 | | 3x-28=12+3 | | 3m-11=49 |

Equations solver categories