(5/6)c=2

Simple and best practice solution for (5/6)c=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/6)c=2 equation:



(5/6)c=2
We move all terms to the left:
(5/6)c-(2)=0
Domain of the equation: 6)c!=0
c!=0/1
c!=0
c∈R
We add all the numbers together, and all the variables
(+5/6)c-2=0
We multiply parentheses
5c^2-2=0
a = 5; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·5·(-2)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*5}=\frac{0-2\sqrt{10}}{10} =-\frac{2\sqrt{10}}{10} =-\frac{\sqrt{10}}{5} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*5}=\frac{0+2\sqrt{10}}{10} =\frac{2\sqrt{10}}{10} =\frac{\sqrt{10}}{5} $

See similar equations:

| 14p^2-45p+25=0 | | 6x-7x=16 | | (25x-10)+(15x+2)=28 | | 4(x+2)7=5x+1 | | (17x+5)+12x=30 | | 2x+1=7x-2 | | 7-2x=3x+3 | | (3x+8)+4x=67 | | (415+x)/6=102.50 | | 4x+3=2x214x+3=2x+21 | | 228x-12x^2=0 | | 36=12nn= | | (6x-12)+9x=72 | | 3n-17=19 | | 5x-1-3x+25=20+24-10x-8 | | 3/4y+7=31 | | 9-9x=2(x+3)-30 | | (x+20)+5x=12 | | (6*3)+5=35-n= | | -8w-37=-5(w+5) | | (6*3)+5=35-nn= | | 4y-10=3y-20 | | x=-16x^2+30x+4 | | 7(w-1)=4w+5 | | -9x-6=6(x+4) | | -134=2(-7j-4) | | 4(6-7p)=-88 | | -7(-5a+8)=187+2 | | 14.n=70 | | (x-4)^2=40 | | 15x-7x+8-x=71 | | -6(4b-6)=-13-95 |

Equations solver categories