(5/6)k+(2/3)=4/3

Simple and best practice solution for (5/6)k+(2/3)=4/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/6)k+(2/3)=4/3 equation:



(5/6)k+(2/3)=4/3
We move all terms to the left:
(5/6)k+(2/3)-(4/3)=0
Domain of the equation: 6)k!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
(+5/6)k+(+2/3)-(+4/3)=0
We multiply parentheses
5k^2+(+2/3)-(+4/3)=0
We get rid of parentheses
5k^2+2/3-4/3=0
We multiply all the terms by the denominator
5k^2*3+2-4=0
We add all the numbers together, and all the variables
5k^2*3-2=0
Wy multiply elements
15k^2-2=0
a = 15; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·15·(-2)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*15}=\frac{0-2\sqrt{30}}{30} =-\frac{2\sqrt{30}}{30} =-\frac{\sqrt{30}}{15} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*15}=\frac{0+2\sqrt{30}}{30} =\frac{2\sqrt{30}}{30} =\frac{\sqrt{30}}{15} $

See similar equations:

| 9-(x-3x)=6+2x-(5+x) | | 40=3b+5b | | 3x-24+7x-14=180 | | 5a-10a=8 | | 22x-38=16x-28 | | -62-12x+15x=43 | | 4(1+6x)=-92 | | -5t+8=23 | | 8q+9q=17 | | 200m-75m+52525=56375-150m | | x/14+7=6 | | 4x-6+3x+26=90 | | 7+s/9=25 | | k(k^2-4k-12)=0 | | (x+6)x=180 | | 19=7x-9 | | 7(-2+x)=70 | | n/5+5=1 | | 4^2x=(1/4)^3x | | -1.2(3-x)=-18 | | 4^2x=(1/4)3x | | 108x+3.6=1000 | | 4^2x=(1/4)63x | | 15.09+0.08h-3=15.59-0.07h | | 72=6(3+r) | | 15.09+0.08h+3=15.59-0.07h | | 3.6x+108=1000 | | 22x+3.6=1000 | | 5^0.2x+3=625 | | 3.6x+22=1000 | | 3.x=-15 | | -10=-2m |

Equations solver categories